Математика для всех!

Программа «Математика для всех» позволяет учащимся ознакомиться со многими интересными вопросами математики школьной программы и вопросами, выходящими за рамки школьной программы, расширить целостное представление о математической науке. Решение математических задач, связанных с логическим мышлением, практическим применением математики закрепит интерес детей к познавательной деятельности, будет способствовать развитию мыслительных операций и общему интеллектуальному развитию.

 

 

 

Педагоги

Рощина Оксана Юрьевна, учитель математики высшей категории

Содержание программы

Элементы математической логики. Теория чисел. Логика высказываний. Диаграммы Эйлера-Венна. Простые и сложные высказывания. Высказывательные формы и операции над ними. Задачи на комбинации и расположение. Применение теории делимости к решению олимпиадных и конкурсных задач. Задачи на делимость, связанные с разложением выражений на множители. Степень числа. Уравнение первой степени с двумя неизвестными в целых числах. Графы в решении задач. Принцип Дирихле.

Геометрия многоугольников. Площади. История развития геометрии. Вычисление площадей в древности, в древней Греции. Геометрия на клеточной бумаге. Разделение геометрических фигур на части. Формулы для вычисления объемов многогранников. Герон Александрийский и его формула. Пифагор и его последователи. Различные способы доказательства теоремы Пифагора. Пифагоровы тройки. Геометрия в древней индии. Геометрические головоломки. Олимпиадные и конкурсные геометрические задачи. О делении отрезка в данном отношении. Задачи на применение подобия, золотое сечение. Пропорциональный циркуль. Из истории преобразований.

Геометрия окружности. Архимед о длине окружности и площади круга. О числе Пи. Окружности, вписанные углы, вневписанные углы в олимпиадных задачах.
Теория вероятностей. Место схоластики в современном мире. Классическое определение вероятности. Геометрическая вероятность. Основные теоремы теории вероятности и их применение к решению задач.

Уравнения и неравенства. Уравнения с параметрами – общие подходы к решению. Разложение на множители. Деление многочлена на многочлен. Теорема Безу о делителях свободного члена, деление «уголком», решение уравнений и неравенств. Модуль числа. Уравнения и неравенства с модулем.

 

 

Цели программы

 создание условий для повышения уровня математического развития учащихся, формирования логического мышления посредством освоения основ содержания математической деятельности.

 

Результат программы

У учащихся могут быть сформированы личностные результаты:

ответственное отношение к учению, готовность и способность обучающихся к самообразованию на основе мотивации к обучению и познанию, осознанный выбор и построение дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;
способность к эмоциональному восприятию математических объектов, задач, решений, рассуждений;
умение контролировать процесс и результат математической деятельности;
первоначальные представления о математической науке как сфере человеческой деятельности, об этапах её развития, о её значимости для развития цивилизации;
коммуникативная компетентность в общении и сотрудничестве со сверстниками в образовательной, учебно-исследовательской, творческой и других видах деятельности;
критичность мышления, умение распознавать логически некорректные высказывания, отличать гипотезу от факта;
креативность мышления, инициативы, находчивости, активности при решении задач.
Метапредметные:

1) Регулятивные.

Учащиеся получат возможность научиться:

составлять план и последовательность действий;
определять последовательность промежуточных целей и соответствующих им действий с учётом конечного результата;
предвидеть возможность получения конкретного результата при решении задач;
осуществлять констатирующий и прогнозирующий контроль по результату и способу действия;
концентрировать волю для преодоления интеллектуальных затруднений и физических препятствий;
адекватно оценивать правильность и ошибочность выполнения учебной задачи, её объективную трудность и собственные возможности её решения.
2) Познавательные.

Учащиеся получат возможность научиться:

устанавливать причинно-следственные связи; строить логические рассуждения, умозаключения (индуктивные, дедуктивные и по аналогии) и выводы;
формировать учебную и общекультурную компетентность в области использования информационно-коммуникационных технологий;
видеть математическую задачу в других дисциплинах, окружающей жизни;
выдвигать гипотезу при решении учебных задач и понимать необходимость их проверки;
планировать и осуществлять деятельность, направленную на решение задач исследовательского характера;
выбирать наиболее эффективные и рациональные способы решения задач;
интерпретировать информацию (структурировать, переводить сплошной текст в таблицу, презентовать полученную информацию, в том числе с помощью ИКТ);
оценивать информацию (критическая оценка, оценка достоверности).
3) Коммуникативные.

Учащиеся получат возможность научиться:

организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками: определять цели, распределять функции и роли участников;
взаимодействовать и находить общие способы работы; работать в группе; находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; слушать партнёра; формулировать, аргументировать и отстаивать своё мнение;
прогнозировать возникновение конфликтов при наличии различных точек зрения;
разрешать конфликты на основе учёта интересов и позиций всех участников;
координировать и принимать различные позиции во взаимодействии;
аргументировать свою позицию и координировать её с позициями партнёров в сотрудничестве при выработке общего решения в совместной деятельности.

Особые условия проведения

Учащиеся получат возможность научиться:

самостоятельно приобретать и применять знания в различных ситуациях для решения различной сложности практических задач, в том числе с использованием при необходимости справочных материалов, калькулятора и компьютера;
пользоваться предметным указателем энциклопедий и справочников для нахождения информации;
уметь решать задачи с помощью перебора возможных вариантов;
выполнять арифметические преобразования выражений, применять их для решения учебных математических задач и задач, возникающих в смежных учебных предметах;
применять изученные понятия, результаты и методы при решении задач из различных реальных ситуаций, не сводящихся к непосредственному применению известных алгоритмов;
самостоятельно действовать в ситуации неопределённости при решении актуальных для них проблем, а также самостоятельно интерпретировать результаты решения задачи с учётом ограничений, связанных с реальными свойствами рассматриваемых процессов и явлений.

Материально-техническая база

Ученическая мебель, ноутбук, интерактивная сенсорная доска, документ-камера, МФУ, дидактические материалы